2015年湖北考研數(shù)學(xué)定理定義公式大全:中值定理與導(dǎo)數(shù)的應(yīng)用
湖北2015年考研數(shù)學(xué)定理定義公式大全:中值定理與導(dǎo)數(shù)的應(yīng)用
第三章 中值定理與導(dǎo)數(shù)的應(yīng)用
1、定理(羅爾定理)如果函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),且在區(qū)間端點(diǎn)的函數(shù)值相等,即f(a)=f(b),那么在 開(kāi)區(qū)間(a,b)內(nèi)至少有一點(diǎn)ξ(a<ξ <b)
2、定理(拉格朗 日中值定理)如果函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),那么在開(kāi)區(qū)間(a,b)內(nèi)至少有一點(diǎn)ξ(a<ξ <b)
3、定理(柯西中值定 理)如果函數(shù)f(x)及F(x)在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),且F’(x)在(a,b)內(nèi)的每一點(diǎn)處均不為零,那么在開(kāi)區(qū)間 (a,b)內(nèi)至少有一點(diǎn)ξ,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f’(ξ)/F’(ξ)成立。
4、洛必達(dá)法則應(yīng)用條 件只能用與未定型諸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞ 0等形式。
5、函數(shù)單調(diào)性的判定法設(shè)函數(shù)f(x)在閉區(qū)間 [a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),那么:(1)如果在(a,b)內(nèi)f’(x)>0,那么函數(shù)f(x)在[a,b]上單調(diào)增加;(2)如 果在(a,b)內(nèi)f’(x)<0,那么函數(shù)f(x)在[a,b]上單調(diào)減少。
如果函數(shù)在定義區(qū)間上連續(xù),除去有限個(gè)導(dǎo)數(shù)不存在的點(diǎn)外 導(dǎo)數(shù)存在且連續(xù),那么只要用方程f’(x)=0的根及f’(x)不存在的點(diǎn)來(lái)劃分函數(shù)f(x)的定義區(qū)間,就能保證f’(x)在各個(gè)部分區(qū)間內(nèi)保持固定符 號(hào),因而函數(shù)f(x)在每個(gè)部分區(qū)間上單調(diào)。
6、函數(shù)的極值如果函數(shù)f(x)在區(qū)間(a,b)內(nèi)有定義,x0是(a,b)內(nèi)的一個(gè)點(diǎn),如果 存在著點(diǎn)x0的一個(gè)去心鄰域,對(duì)于這去心鄰域內(nèi)的任何點(diǎn)x,f(x)f(x0)均成立,就稱(chēng)f(x0)是函數(shù)f(x)的一個(gè)極小值。
在函數(shù) 取得極值處,曲線上的切線是水平的,但曲線上有水平曲線的地方,函數(shù)不一定取得極值,即可導(dǎo)函數(shù)的極值點(diǎn)必定是它的駐點(diǎn)(導(dǎo)數(shù)為0的點(diǎn)),但函數(shù)的駐點(diǎn)卻 不一定是極值點(diǎn)。
定理(函數(shù)取得極值的必要條件)設(shè)函數(shù)f(x)在x0處可導(dǎo),且在x0處取得極值,那么函數(shù)在x0的導(dǎo)數(shù)為零,即f’ (x0)=0.定理(函數(shù)取得極值的第一種充分條件)設(shè)函數(shù)f(x)在x0一個(gè)鄰域內(nèi)可導(dǎo),且f’(x0)=0,那么:(1)如果當(dāng)x取x0左側(cè)臨近的值 時(shí),f’(x)恒為正;當(dāng)x去x0右側(cè)臨近的值時(shí),f’(x)恒為負(fù),那么函數(shù)f(x)在x0處取得極大值;(2)如果當(dāng)x取x0左側(cè)臨近的值時(shí),f’ (x)恒為負(fù);當(dāng)x去x0右側(cè)臨近的值時(shí),f’(x)恒為正,那么函數(shù)f(x)在x0處取得極小值;(3)如果當(dāng)x取x0左右兩側(cè)臨近的值時(shí),f’(x) 恒為正或恒為負(fù),那么函數(shù)f(x)在x0處沒(méi)有極值。
定理(函數(shù)取得極值的第二種充分條件)設(shè)函數(shù)f(x)在x0處具有二階導(dǎo)數(shù)且f’ (x0)=0,f’’(x0)≠0那么:(1)當(dāng)f’’(x0)<0時(shí),函數(shù)f(x)在x0處取得極大值;(2)當(dāng)f’’(x0)>0時(shí),函 數(shù)f(x)在x0處取得極小值;駐點(diǎn)有可能是極值點(diǎn),不是駐點(diǎn)也有可能是極值點(diǎn)。
7、函數(shù)的凹凸性及其判定設(shè)f(x)在區(qū)間Ix上連續(xù),如 果對(duì)任意兩點(diǎn)x1,x2恒有f[(x1+x2)/2]<[f(x1)+f(x1)]/2,那么稱(chēng)f(x)在區(qū)間Ix上圖形是凹的;如果恒有 f[(x1+x2)/2]>[f(x1)+f(x1)]/2,那么稱(chēng)f(x)在區(qū)間Ix上圖形是凸的。
定理設(shè)函數(shù)f(x)在閉區(qū)間 [a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)具有一階和二階導(dǎo)數(shù),那么(1)若在(a,b)內(nèi)f’’(x)>0,則f(x)在閉區(qū)間[a,b]上的圖形 是凹的;(2)若在(a,b)內(nèi)f’’(x)<0,則f(x)在閉區(qū)間[a,b]上的圖形是凸的。
判斷曲線拐點(diǎn)(凹凸分界點(diǎn))的步驟 (1)求出f’’(x);(2)令f’’(x)=0,解出這方程在區(qū)間(a,b)內(nèi)的實(shí)根;(3)對(duì)于(2)中解出的每一個(gè)實(shí)根x0,檢查f’’(x)在 x0左右兩側(cè)鄰近的符號(hào),如果f’’(x)在x0左右兩側(cè)鄰近分別保持一定的符號(hào),那么當(dāng)兩側(cè)的符號(hào)相反時(shí),點(diǎn)(x0,f(x0))是拐點(diǎn),當(dāng)兩側(cè)的符號(hào) 相同時(shí),點(diǎn)(x0,f(x0))不是拐點(diǎn)。
在做函數(shù)圖形的時(shí)候,如果函數(shù)有間斷點(diǎn)或?qū)?shù)不存在的點(diǎn),這些點(diǎn)也要作為分點(diǎn)。
相關(guān)推薦:
2.部分稿件來(lái)源于網(wǎng)絡(luò),如有不實(shí)或侵權(quán),請(qǐng)聯(lián)系我們溝通解決。最新官方信息請(qǐng)以湖北省教育考試院及各教育官網(wǎng)為準(zhǔn)!
-
2014-07-122014-07-122015年湖北考研高等數(shù)學(xué)知識(shí)點(diǎn)講解:關(guān)于無(wú)窮小量的兩個(gè)定理湖北2015年考研高等數(shù)學(xué)知識(shí)點(diǎn)講解:關(guān)于無(wú)窮小量的兩個(gè)定理
-
2014-07-122014-07-122015年湖北考研高等數(shù)學(xué)知識(shí)點(diǎn)講解:函數(shù)極限的存在準(zhǔn)則湖北2015年考研高等數(shù)學(xué)知識(shí)點(diǎn)講解:函數(shù)極限的存在準(zhǔn)則
-
2014-07-122014-07-122015年湖北考研高等數(shù)學(xué)知識(shí)點(diǎn)講解:函數(shù)的極限湖北2015年考研高等數(shù)學(xué)知識(shí)點(diǎn)講解:函數(shù)的極限 函數(shù)的極限(分兩種情況) a):自變量趨向無(wú)窮大時(shí)函數(shù)的極限
-
2014-07-122014-07-122015年湖北考研高等數(shù)學(xué)知識(shí)點(diǎn)講解:數(shù)列的極限湖北2015年考研高等數(shù)學(xué)知識(shí)點(diǎn)講解:數(shù)列的極限 我們先來(lái)回憶一下初等數(shù)學(xué)中學(xué)習(xí)的數(shù)列的概念。 ⑴、數(shù)列:若按照一定的法則,有第一個(gè)數(shù)a1,第二個(gè)數(shù)a2,,依次排列下去,使得任
-
2014-07-122014-07-122015年湖北考研高等數(shù)學(xué)知識(shí)點(diǎn)講解:初等函數(shù)湖北2015年考研高等數(shù)學(xué)知識(shí)點(diǎn)講解:初等函數(shù)
-
2014-07-122014-07-122015年湖北考研高等數(shù)學(xué)知識(shí)點(diǎn)講解:復(fù)合函數(shù)湖北2015年考研高等數(shù)學(xué)知識(shí)點(diǎn)講解:復(fù)合函數(shù)
已有1254人已成功提交信息
掃一掃加入微信公眾號(hào)
隨時(shí)獲取湖北考研政策、通知、公告以及各類(lèi)學(xué)習(xí)資料、學(xué)習(xí)方法、課件。