湖北自考網(wǎng)旗下頻道:湖北專升本網(wǎng)為考生提供湖北專升本信息服務(wù) ,僅供學(xué)習(xí)交流使用,官方信息以湖北教育考試院為準(zhǔn)。

湖北自考網(wǎng)

普通專升本
專升本首頁(yè) 升本簡(jiǎn)章 升本院校 升本專業(yè) 升本答疑 升本經(jīng)驗(yàn) 網(wǎng)上報(bào)名
專升本專題:
專升本指南 報(bào)名時(shí)間 報(bào)名條件 考試科目 考試大綱 考前輔導(dǎo) 考試經(jīng)驗(yàn) 升本問(wèn)答 模擬考試 成績(jī)查詢 錄取名單 自考專升本 成考專升本
湖北專升本網(wǎng) > 外省專升本 > 2015年蘭州交通大學(xué)普通專升本數(shù)學(xué)考試大綱網(wǎng)站地圖

2015年蘭州交通大學(xué)普通專升本數(shù)學(xué)考試大綱

來(lái)源:湖北專升本網(wǎng) 整編:湖北自考網(wǎng) 時(shí)間:2015-01-29 瀏覽:0

專升本培訓(xùn)


2015年蘭州交通大學(xué)普通專升本數(shù)學(xué)考試大綱


湖北專升本網(wǎng)獲悉,2015年蘭州交通大學(xué)普通專升本數(shù)學(xué)考試大綱已公布。詳情如下:


考試形式和試卷結(jié)構(gòu)


一、答題方式

答題方式為:閉卷、筆試.


二、試卷題型結(jié)構(gòu)

試卷題型結(jié)構(gòu)為:?jiǎn)芜x題、填空題、解答題:


三、參考書籍

高等數(shù)學(xué)(上、下冊(cè))(第二版) 常迎香 主編 科學(xué)出版社


專升本入學(xué)考試數(shù)學(xué)考試大綱

一 函數(shù)、極限、連續(xù)

考試內(nèi)容

函數(shù)的概念及表示法:函數(shù)的有界性 單調(diào)性 周期性和奇偶性 復(fù)合函數(shù) 反函數(shù)分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 函數(shù)關(guān)系的建立

數(shù)列極限與函數(shù)極限的定義及其性質(zhì):函數(shù)的左極限與右極限 無(wú)窮小量和無(wú)窮大量的概念及其關(guān)系 無(wú)窮小量的性質(zhì)及無(wú)窮小量的比較 極限的四則運(yùn)算 極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個(gè)重要極限 函數(shù)連續(xù)的概念 函數(shù)間斷點(diǎn)的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)

考試要求

1、理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立簡(jiǎn)單應(yīng)用問(wèn)題的函數(shù)關(guān)系.

2、了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.

3、理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.

4、掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.

5、理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左、右極限之間的關(guān)系.

6、掌握極限的性質(zhì)及四則運(yùn)算法則.

7、掌握極限存在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法.

8、理解無(wú)窮小量、無(wú)窮大量的概念,掌握無(wú)窮小量的比較方法,會(huì)用等價(jià)無(wú)窮小量求極限.

9、理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類型.

10、了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì).

二 一元函數(shù)微分學(xué)

考試內(nèi)容

導(dǎo)數(shù)和微分的概念 導(dǎo)數(shù)的幾何意義和物理意義 函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系  平面曲線的切線和法線 導(dǎo)數(shù)和微分的四則運(yùn)算 基本初等函數(shù)的導(dǎo)數(shù) 復(fù)合函數(shù) 反函數(shù) 隱函數(shù)以及參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù) 高階導(dǎo)數(shù) 一階微分形式的不變性 微分中值定理 洛必達(dá)(L’Hospital)法則 函數(shù)單調(diào)性的判別 函數(shù)的極值 函數(shù)的最大值和最小值 函數(shù)圖形的凹凸性 拐點(diǎn)及漸近線 函數(shù)圖形的描繪

考試要求

1、理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系.

2、掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式.了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求函數(shù)的微分.

3、了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù).

4、會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù).

5、理解并會(huì)使用羅爾(Rolle)定理,拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理.

6、掌握用洛必達(dá)法則求未定式極限的方法.

7、理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用.

8、會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性、會(huì)求函數(shù)圖形的拐點(diǎn)以及水平、鉛直漸近線,會(huì)描繪函數(shù)的圖形.

三 一元函數(shù)積分學(xué)

考試內(nèi)容

原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限函數(shù)及其導(dǎo)數(shù) 牛頓一萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 有理函數(shù)、三角函數(shù)的有理式和簡(jiǎn)單無(wú)理函數(shù)的積分 反常積分 定積分的應(yīng)用

考試要求

1、理解原函數(shù)的概念,理解不定積分和定積分的概念.

2、掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法.

3、會(huì)求有理函數(shù),三角函數(shù)有理式和簡(jiǎn)單無(wú)理函數(shù)的積分.

4、理解積分上限的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式.

5、了解反常積分的概念,會(huì)計(jì)算反常積分.

6、掌握利用定積分表達(dá)和計(jì)算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長(zhǎng)、旋轉(zhuǎn)體的體積、平行截面面積為已知的立體體積等)及函數(shù)的平均值.

四 向量代數(shù)和空間解析幾何

考試內(nèi)容

向量的概念 向量的線性運(yùn)算 向量的數(shù)量積和向量積 兩向量垂直、平行的條件 兩向量的夾角 向量的坐標(biāo)表達(dá)式及其運(yùn)算 單位向量 方向余弦 曲面方程和空間曲線方程的概念平面方程 直線方程 平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件 球面 柱面 旋轉(zhuǎn)曲面等常用的二次曲面方程及其圖形 空間曲線的參數(shù)方程和一般方程 空間曲線在坐標(biāo)面上的投影曲線方程

考試要求

1、理解空間直角坐標(biāo)系,理解向量的概念及其表示.

2、掌握向量的運(yùn)算(線性運(yùn)算、數(shù)量積、向量積),了解兩個(gè)向量垂直、平行的條件.

3、理解單位向量、方向余弦、向量的坐標(biāo)表達(dá)式,掌握用坐標(biāo)表達(dá)式進(jìn)行向量運(yùn)算的方法.

4、掌握平面方程和直線方程及其求法.

5、會(huì)求平面與平面、平面與直線、直線與直線之間的夾角,并會(huì)利用平面、直線的相互關(guān)系(平行、垂直、相交等)解決有關(guān)問(wèn)題.

6、會(huì)求點(diǎn)到直線以及點(diǎn)到平面的距離.

7、了解曲面方程和空間曲線方程的概念.

8、掌握常用二次曲面的方程及其圖形,會(huì)求簡(jiǎn)單的柱面和旋轉(zhuǎn)曲面的方程.

9、掌握空間曲線的參數(shù)方程和一般方程,了解空間曲線在坐標(biāo)平面上的投影,并會(huì)求該投影曲線的方程.

五 多元函數(shù)微分學(xué)

考試內(nèi)容

多元函數(shù)的概念 二元函數(shù)的極限與連續(xù)的概念 有界閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì) 多元函數(shù)的偏導(dǎo)數(shù)和全微分 全微分存在的必要條件和充分條件 多元復(fù)合函數(shù)、隱函數(shù)(僅限一個(gè)方程的情形)的一階偏導(dǎo)數(shù) 二階偏導(dǎo)數(shù) 方向?qū)?shù)和梯度 空間曲線的切線和法平面 曲面的切平面和法線 多元函數(shù)的極值和條件極值 多元函數(shù)的最大值、最小值及其簡(jiǎn)單應(yīng)用

考試要求

1、理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義.

2、了解二元函數(shù)的極限與連續(xù)的概念以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì).

3、理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念,會(huì)求全微分,了解全微分存在的必要條件和充分條件,了解全微分形式的不變性.

4、理解方向?qū)?shù)與梯度的概念,并掌握其計(jì)算方法.

5、掌握多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù)的求法.

6、會(huì)求隱函數(shù)(僅限一個(gè)方程的情形)的一階偏導(dǎo)數(shù)、二階偏導(dǎo)數(shù).

7、掌握空間曲線的切線和法平面及曲面的切平面和法線的概念,會(huì)求它們的方程.

8、理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的最大值和最小值,并會(huì)解決一些簡(jiǎn)單的應(yīng)用問(wèn)題.

六 多元函數(shù)積分學(xué)

考試內(nèi)容

二重積分的概念、性質(zhì)、計(jì)算和應(yīng)用

考試要求

1、理解二重積分的概念,了解二重積分的性質(zhì),了解二重積分的中值定理.

2、掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)),

3、會(huì)用二重積分求一些幾何量(平面圖形的面積、立體的體積、曲面的面積).

七 常微分方程

考試內(nèi)容

常微分方程的基本概念 可分離變量的微分方程 齊次微分方程 一階線性微分方程 貝努利方程 二階線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理 二階常系數(shù)齊次線性微分方程 簡(jiǎn)單的二階常系數(shù)非齊次線性微分方程

考試要求

1、了解微分方程及其階、解、通解、初始條件和特解等概念.

2、掌握可分離變量的微分方程及一階線性微分方程的解法.

3、會(huì)解齊次微分方程、貝努利方程,會(huì)用簡(jiǎn)單的變量代換解某些微分方程.

4、理解線性微分方程解的性質(zhì)及解的結(jié)構(gòu).

5、掌握二階常系數(shù)齊次線性微分方程的解法.

6、會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程.

結(jié)束
特別聲明:1.凡本網(wǎng)注明稿件來(lái)源為“湖北自考網(wǎng)”的,轉(zhuǎn)載必須注明“稿件來(lái)源:湖北自考網(wǎng)(m.heywebguys.com)”,違者將依法追究責(zé)任;
2.部分稿件來(lái)源于網(wǎng)絡(luò),如有不實(shí)或侵權(quán),請(qǐng)聯(lián)系我們溝通解決。最新官方信息請(qǐng)以湖北省教育考試院及各教育官網(wǎng)為準(zhǔn)!
專升本最新文章 專升本政策
微信公眾號(hào) 考試交流群
湖北專升本微信公眾號(hào)

湖北專升本網(wǎng)微信公眾號(hào)

隨時(shí)獲取湖北專升本政策、通知、公告以及各類學(xué)習(xí)資料、學(xué)習(xí)方法、課件。

成考院校 自考院校 專升本院校 資格證 其它熱門欄目 最新更新