湖北自考網(wǎng)旗下頻道:湖北專(zhuān)升本網(wǎng)為考生提供湖北專(zhuān)升本信息服務(wù) ,僅供學(xué)習(xí)交流使用,官方信息以湖北教育考試院為準(zhǔn)。

湖北自考網(wǎng)

普通專(zhuān)升本
專(zhuān)升本首頁(yè) 升本簡(jiǎn)章 升本院校 升本專(zhuān)業(yè) 升本答疑 升本經(jīng)驗(yàn) 網(wǎng)上報(bào)名
專(zhuān)升本專(zhuān)題:
專(zhuān)升本指南 報(bào)名時(shí)間 報(bào)名條件 考試科目 考試大綱 考前輔導(dǎo) 考試經(jīng)驗(yàn) 升本問(wèn)答 模擬考試 成績(jī)查詢(xún) 錄取名單 自考專(zhuān)升本 成考專(zhuān)升本
湖北專(zhuān)升本網(wǎng) > 外省專(zhuān)升本 > 2015年井岡山大學(xué)專(zhuān)升本《高等數(shù)學(xué)》考試大綱網(wǎng)站地圖

2015年井岡山大學(xué)專(zhuān)升本《高等數(shù)學(xué)》考試大綱

來(lái)源:湖北專(zhuān)升本網(wǎng) 整編:湖北自考網(wǎng) 時(shí)間:2014-10-13 瀏覽:0

專(zhuān)升本培訓(xùn)


井岡山大學(xué)2015年專(zhuān)升本《高等數(shù)學(xué)》考試大綱


湖北專(zhuān)升本網(wǎng)獲悉,2015年井岡山大學(xué)專(zhuān)升本《高等數(shù)學(xué)》考試大綱如下:


關(guān)于考試大綱的幾點(diǎn)說(shuō)明

1.高等數(shù)學(xué)是理工類(lèi)本科專(zhuān)業(yè)后續(xù)課程的基礎(chǔ),是教學(xué)計(jì)劃中的一門(mén)專(zhuān)業(yè)基礎(chǔ)課.

2.考試要求:本課程的考試要求既要考核知識(shí),又要考核能力,因此要求考生復(fù)習(xí)本課程時(shí)應(yīng)注意系統(tǒng)掌握本大綱所規(guī)定的基礎(chǔ)知識(shí),基本方法,提高運(yùn)算能力和邏輯思維能力,并能運(yùn)用數(shù)學(xué)知識(shí)分析,解決一些實(shí)際問(wèn)題.

3.本大綱中將基本要求分為由低到高的三個(gè)等級(jí),對(duì)概念和理論性的知識(shí),分別用“知道”、“了解”、“理解”三級(jí)區(qū)分,對(duì)運(yùn)算方法的知識(shí)分別用“會(huì)或能”、“掌握”、“熟練掌握”三級(jí)區(qū)分.

4.本課程考試方式為閉卷,答卷時(shí)間為120分鐘,采用百分制,試題的難度按易、中、難三個(gè)層次的比例約為30:50:20.

5.題型

填空題,共5小題,每小題3分,計(jì)15分.

單項(xiàng)選擇題(四個(gè)備選答案中有且只有一個(gè)正確)共5小題,每小題3分,計(jì)15分.

計(jì)算題,共5小題,每小題10分,計(jì)50分.

綜合或應(yīng)用題1題,計(jì)10分.

證明題1題,計(jì)10分.

6.參考書(shū)目: 劉忠東,羅賢強(qiáng)等編《微積分》(上、下)中國(guó)傳媒大學(xué)出版社


考試內(nèi)容及要求

一、函數(shù)、極限與連續(xù)

1.考核知識(shí)點(diǎn)

(1)函數(shù):函數(shù)的概念,函數(shù)的幾種特性,分段函數(shù),復(fù)合函數(shù)與反函數(shù),初等函數(shù).

(2)極限:數(shù)列的極限,函數(shù)的極限,無(wú)窮小與無(wú)窮大,極限的運(yùn)算法則,兩個(gè)重要極限,無(wú)窮小的比較.

(3)連續(xù):函數(shù)的連續(xù)性與間斷點(diǎn),閉區(qū)間上連續(xù)函數(shù)的性質(zhì).

2.考核目標(biāo)和要求

(1)理解和掌握函數(shù)、極限與連續(xù)的概念.

(2)能熟練地求函數(shù)的定義域,初等函數(shù)及分段函數(shù)的函數(shù)值.

(3)熟練地應(yīng)用極限的四則運(yùn)算法則,兩個(gè)重要極限求數(shù)列或函數(shù)極限.

(4)了解無(wú)窮小量與無(wú)窮大的概念與關(guān)系,會(huì)對(duì)無(wú)窮小的階進(jìn)行比較.

(5)掌握函數(shù)左、右極限與極限的關(guān)系.

(6)了解函數(shù)連續(xù)性的概念,會(huì)判斷分段函數(shù)在分段點(diǎn)處的連續(xù)性.

(7)會(huì)求函數(shù)的間斷點(diǎn)和連續(xù)區(qū)間以及會(huì)判斷間斷點(diǎn)的類(lèi)型.

(8)知道閉區(qū)間上連續(xù)函數(shù)的性質(zhì).

二、導(dǎo)數(shù)與微分

1.考核知識(shí)點(diǎn)

(1)導(dǎo)數(shù)的定義,導(dǎo)數(shù)的幾何意義,可導(dǎo)與連續(xù)的關(guān)系.

(2)求導(dǎo)法則,導(dǎo)數(shù)的四則運(yùn)算法則,復(fù)合函數(shù)的求導(dǎo)法則,反函數(shù)的求導(dǎo)法則,隱函數(shù)及參數(shù)方程所確定的函數(shù)的求導(dǎo)法則,基本求導(dǎo)公式.

(3)高階導(dǎo)數(shù).

(4)微分的定義,求法及運(yùn)算法則.

2.考核目標(biāo)及要求

(1)理解導(dǎo)數(shù)定義,了解微分的概念,會(huì)求曲線上一點(diǎn)處的切線斜率及切線方程,會(huì)用導(dǎo)數(shù)定義求一些簡(jiǎn)單函數(shù)的導(dǎo)數(shù),知道可導(dǎo)與連續(xù)的關(guān)系.

(2)熟練地運(yùn)用求導(dǎo)法則求函數(shù)的導(dǎo)數(shù),熟練地求函數(shù)的微分.

(3)會(huì)求初等函數(shù)的高階導(dǎo)數(shù).

三、導(dǎo)數(shù)的應(yīng)用

1.考核知識(shí)點(diǎn)

(1)中值定理、羅爾定理、拉格朗的中值定理,柯西中值定理.

(2)導(dǎo)數(shù)的應(yīng)用,洛比達(dá)法則,函數(shù)的單調(diào)性,函數(shù)的極值,函數(shù)的凹凸性,拐點(diǎn),曲線的漸近線(水平、垂直)簡(jiǎn)單函數(shù)圖形的描繪,最大值、最小值應(yīng)用問(wèn)題.

2.考核目標(biāo)和要求及重難點(diǎn)

(1)會(huì)敘述羅爾定理,拉格朗的中值定理,柯西中值定理,掌握用這三個(gè)定理作一些命題的證明.

(2)熟練地運(yùn)用洛比達(dá)法則求各種未定型的極限.

(3)掌握用導(dǎo)數(shù)判定函數(shù)的單調(diào)性和極值點(diǎn),會(huì)求函數(shù)的單調(diào)區(qū)間和極值,會(huì)用函數(shù)的單調(diào)性證明不等式.

(4)會(huì)求函數(shù)的凹凸區(qū)間和拐點(diǎn),會(huì)求曲線的水平和垂直浙近線.

(5)會(huì)利用導(dǎo)數(shù)方法作簡(jiǎn)單函數(shù)的圖形.

(6)掌握用導(dǎo)數(shù)方法求解最值應(yīng)用問(wèn)題.

四、不定積分

1.考核知識(shí)點(diǎn)

(1)原函數(shù)與不定積分的概念.

(2)基本積分公式,換元積分法和分部積分法.

(3)簡(jiǎn)單有理函數(shù)的積分.

2.考核目標(biāo)和要求

(1)掌握原函數(shù)與不定積分的概念,能熟練地應(yīng)用基本積分公式,知道求導(dǎo)與求不定積分兩種運(yùn)算的關(guān)系.

(2)熟練地利用換元法與分部積分法求不定積分.

(3)會(huì)求一些簡(jiǎn)單有理函數(shù)的不定積分.

五、定積分及其應(yīng)用

1.考核知識(shí)點(diǎn)

(1)定積分的定義與性質(zhì).

(2)變上限的定積分,原函數(shù)存在定理與牛頓—萊布尼茲公式.

(3)定積分的換元法與分部積分法.

(4)廣義積分.

(5)定積分的應(yīng)用,平面圖形的面積和旋轉(zhuǎn)體的體積.

2.考核目標(biāo)和要求

(1)知道定積分的定義,了解定積分的性質(zhì)和積分中值定理.

(2)了解變上限的定積分,原函數(shù)存在定理,熟練地應(yīng)用牛頓—萊布尼茲公式計(jì)算定積分.

(3)熟練掌握用定積分的換元法和分部積分法求定積分.

(4)會(huì)計(jì)算簡(jiǎn)單的廣義積分.

(5)掌握有關(guān)用積分性質(zhì),變上限的定積分或換元法作一些命題的證明.

(6)了解微元法,掌握用定積分求平面圖形的面積或旋轉(zhuǎn)體的體積.

六、向量代數(shù)與空間解析幾何

1.考核知識(shí)點(diǎn)

(1)向量的概念及向量的線性運(yùn)算.

(2)空間直角坐標(biāo)系,向量的坐標(biāo)表示.

(3)向量的數(shù)量積與向量積.

(4)平面與空間直線的各種方程.

(5)兩平面間,兩直線間,平面與直線間的位置關(guān)系.#p#分頁(yè)標(biāo)題#e#

(6)曲面與空間曲線的方程.

(7)柱面、旋轉(zhuǎn)曲面、橢球面、橢圓拋物面、單葉雙曲面及雙葉雙曲面.

2.考核目標(biāo)及要求

(1)理解向量的定義,向量的模、方向的概念.

(2)熟練掌握向量的加、減、數(shù)乘、數(shù)量積及向量積的運(yùn)算.

(3)知道向量平行與垂直的條件.

(4)根據(jù)條件,熟練地建立平面和直線的各種形式的方程.

(5)能正確判斷平面與平面、直線與直線、平面與直線的位置關(guān)系.

(6)能正確識(shí)別曲面的方程及形狀.

七、多元函數(shù)的微積分學(xué)

1.考核知識(shí)點(diǎn)

(1)多元函數(shù)的定義,二元函數(shù)的極限與連續(xù).

(2)偏導(dǎo)數(shù)的概念及計(jì)算,高階偏導(dǎo)數(shù),全微分的概念及計(jì)算.

(3)多元復(fù)合函數(shù)的求導(dǎo)法則及隱函數(shù)的求導(dǎo)法.

(4)偏導(dǎo)數(shù)的幾何應(yīng)用.

(5)多元函數(shù)的極值,條件極值及拉格朗日乘數(shù)法.

(6)二重積分的概念及性質(zhì).

(7)二重積分的計(jì)算—直角坐標(biāo)系及利用極坐標(biāo)計(jì)算.

(8)二重積分的簡(jiǎn)單應(yīng)用—立體的體積及曲面的面積.

2.考核目標(biāo)及要求及重難點(diǎn)

(1)知道二元函數(shù)和二元函數(shù)極限與連續(xù)的定義,會(huì)求二元函數(shù)的定義域.

(2)熟練掌握求偏導(dǎo)數(shù)的方法,會(huì)求二元函數(shù)的二階偏導(dǎo)數(shù).

(3)掌握二元復(fù)合函數(shù)及隱函數(shù)的求導(dǎo)法則,會(huì)求三元復(fù)合函數(shù)及隱函數(shù)的偏導(dǎo)數(shù).

(4)了解二、三元函數(shù)全微分的概念,會(huì)求二、三元函數(shù)的全微分.

(5)會(huì)求空間曲線的切線與法平面、曲面的切平面與法線方程.

(6)了解二元函數(shù)極值與條件極值的概念,會(huì)求二元函數(shù)的極值與條件極值.

(7)知道二重積分的定義和性質(zhì).

(8)熟練掌握化二重積分為二次積分求二重積分的方法,包括直角坐標(biāo)系中及利用極坐標(biāo)變換的方法.

八、常微分方程

1.考核知識(shí)點(diǎn)

(1)微分方程的定義,階及解的概念.

(2)一階微分方程:可分離變量的微分方程,齊次方程,一階線性微分方程.

(3)可降階的高階微分方程及微分方程.

(4)二階常系數(shù)線性齊次和非齊次微分方程.

2.考核目標(biāo)及要求

(1)了解微分方程的定義,階及解的概念,熟練掌握可分離變量方程和一階非齊次線性方程的解法,掌握齊次方程的解法.

(2)掌握可降階的三類(lèi)微分方程的解法.

(3)掌握二階常系數(shù)齊次線性方程的解法.

(4)掌握二階常系數(shù)非齊次線性方程中 和 時(shí)通特及特解的求法.(這里 為 的 次多項(xiàng)式)

(5)掌握對(duì)實(shí)際問(wèn)題建立微分方程并求解之.

九、級(jí)數(shù)

1.考核知識(shí)點(diǎn)

(1)數(shù)項(xiàng)級(jí)數(shù)的概念,級(jí)數(shù)的斂散性及性質(zhì).

(2)正項(xiàng)級(jí)數(shù)的定義及其判別法.

(3)交錯(cuò)級(jí)數(shù)的定義及其收斂判別法,任意項(xiàng)級(jí)數(shù)的絕對(duì)收斂與條件收斂.

(4)冪級(jí)數(shù)的定義,收斂半徑、收斂域.

(5)冪級(jí)數(shù)的運(yùn)算和函數(shù)的連續(xù)性,和函數(shù)的求導(dǎo)與求積.

(6)函數(shù)展開(kāi)成冪級(jí)數(shù).

(7)幾個(gè)常見(jiàn)函數(shù)的馬克勞林級(jí)數(shù).( )

2.考核目標(biāo)和要求

(1)理解無(wú)窮級(jí)數(shù)斂散性的定義,收斂的必要條件及基本性質(zhì).

(2)熟練掌握正項(xiàng)級(jí)數(shù)斂散性的比較判別法,比值判別法.

(3)了解交錯(cuò)級(jí)數(shù)的定義,掌握交錯(cuò)級(jí)數(shù)收斂的判別法.

(4)理解任意項(xiàng)級(jí)數(shù)的絕對(duì)收斂與條件收斂.

(5)知道冪級(jí)數(shù)的定義,會(huì)求冪級(jí)數(shù)的收斂半徑和收斂域.

(6)了解冪級(jí)數(shù)的四則運(yùn)算,和函數(shù)的連續(xù)性,會(huì)求和函數(shù)的導(dǎo)數(shù)和積分.

(7)掌握 的冪級(jí)數(shù)展開(kāi)式,并應(yīng)用它們將一些簡(jiǎn)單函數(shù)展成 的冪級(jí)數(shù).

結(jié)束
特別聲明:1.凡本網(wǎng)注明稿件來(lái)源為“湖北自考網(wǎng)”的,轉(zhuǎn)載必須注明“稿件來(lái)源:湖北自考網(wǎng)(m.heywebguys.com)”,違者將依法追究責(zé)任;
2.部分稿件來(lái)源于網(wǎng)絡(luò),如有不實(shí)或侵權(quán),請(qǐng)聯(lián)系我們溝通解決。最新官方信息請(qǐng)以湖北省教育考試院及各教育官網(wǎng)為準(zhǔn)!
專(zhuān)升本最新文章 專(zhuān)升本政策
微信公眾號(hào) 考試交流群
湖北專(zhuān)升本微信公眾號(hào)

湖北專(zhuān)升本網(wǎng)微信公眾號(hào)

隨時(shí)獲取湖北專(zhuān)升本政策、通知、公告以及各類(lèi)學(xué)習(xí)資料、學(xué)習(xí)方法、課件。

成考院校 自考院校 專(zhuān)升本院校 資格證 其它熱門(mén)欄目 最新更新