湖北自考網(wǎng)旗下:湖北研究生考網(wǎng)提供湖北研究生招生信息,包括湖北考研招生簡(jiǎn)章,專業(yè)目錄,考研大綱,考研分?jǐn)?shù)線等及湖北考研培訓(xùn)輔導(dǎo)班

湖北自考網(wǎng)

研究生考試
考研首頁(yè) 考研院校 考研大綱 招生簡(jiǎn)章 準(zhǔn)考證打印
專題:
湖北研究生考試備考流程 湖北研究生考試報(bào)名時(shí)間 湖北研究生考試考試時(shí)間 考研復(fù)試準(zhǔn)備 湖北考研錄取通知書(shū)領(lǐng)取 湖北研究生考試歷年分?jǐn)?shù)線
武漢大學(xué)研究生院 華中科技大學(xué)研究生院 中國(guó)地質(zhì)大學(xué)(武漢)研究生院 武漢理工大學(xué)研究生院 華中師范大學(xué)研究生院 華中農(nóng)業(yè)大學(xué)研究生院 中南財(cái)經(jīng)政法大學(xué)研究生院 武漢紡織大學(xué)研究生院 湖北大學(xué)研究生院 中南民族大學(xué)研究生院 中科院水生生物研究所研究生院 宜昌測(cè)試技術(shù)研究所研究生院 武漢科技大學(xué)研究生院 長(zhǎng)江大學(xué)研究生院 武漢工程大學(xué)研究生院 武漢輕工大學(xué)研究生院 湖北工業(yè)大學(xué)研究生院 湖北中醫(yī)藥大學(xué)研究生院 湖北師范大學(xué)研究生院 湖北民族學(xué)院研究生院 武漢體育學(xué)院研究生院 湖北美術(shù)學(xué)院研究生院 武漢音樂(lè)學(xué)院研究生院 三峽大學(xué)研究生院 中科院武漢巖土力學(xué)研究所研究生院 中科院武漢物理與數(shù)學(xué)研究所研究生院 中科院測(cè)量與地球物理研究所研究生院 中科院武漢植物園研究生院 中科院武漢病毒研究所研究生院 長(zhǎng)江科學(xué)院研究生院 中鋼集團(tuán)武漢安全環(huán)保研究院研究生院 武漢材料保護(hù)研究所研究生院 中國(guó)航空研究院610所研究生院 航天化學(xué)動(dòng)力技術(shù)研究院42所研究生院 武漢郵電科學(xué)研究院研究生院 武漢生物制品研究所研究生院 中國(guó)地震局地震研究所研究生院 武漢數(shù)字工程研究所研究生院 中國(guó)艦船研究設(shè)計(jì)中心(701所)研究生院 武漢船用電力推進(jìn)裝置研究所研究生院 華中光電技術(shù)研究所研究生院 武漢船舶通信研究所研究生院 武漢第二船舶設(shè)計(jì)研究所研究生院 湖北省社會(huì)科學(xué)院研究生院 湖北省化學(xué)研究院研究生院 中共湖北省委黨校研究生院 中國(guó)人民解放軍國(guó)防信息學(xué)院研究生院 軍事經(jīng)濟(jì)學(xué)院研究生院 海軍工程大學(xué)研究生院 空軍雷達(dá)學(xué)院研究生院 第二炮兵指揮學(xué)院研究生院 中國(guó)水科院長(zhǎng)江水產(chǎn)研究所研究生院 江漢大學(xué)研究生院 黃岡師范學(xué)院研究生院 湖北科技學(xué)院研究生院 湖北經(jīng)濟(jì)學(xué)院研究生院 湖北汽車工業(yè)學(xué)院研究生院
湖北研究生網(wǎng) > 考研資訊 > 考試大綱 > 2015年湖北考研數(shù)學(xué)(二)大綱(1) 湖北考研大綱_湖北研究生考試網(wǎng)網(wǎng)站地圖
考研培訓(xùn)

2015年湖北考研數(shù)學(xué)(二)大綱(1)

來(lái)源:湖北自考網(wǎng) 時(shí)間:2014-09-17


湖北2015年考研數(shù)學(xué)(二)大綱(1)


  湖北考研網(wǎng)獲悉,2015年數(shù)學(xué)二考研大綱于2014年9月13日上午公布,較2014年考研大綱無(wú)大的變化,具體內(nèi)容如下:


  考試科目:高等數(shù)學(xué)、線性代數(shù)


  考試形式和試卷結(jié)構(gòu)

  一、試卷滿分及考試時(shí)間

  試卷滿分為150分,考試時(shí)間為180分鐘.

  二、答題方式

  答題方式為閉卷、筆試.

  三、試卷內(nèi)容結(jié)構(gòu)

  高等教學(xué)  約78%

  線性代數(shù)  約22%

  四、試卷題型結(jié)構(gòu)

  單項(xiàng)選擇題 8小題,每小題4分,共32分

  填空題 6小題,每小題4分,共24分

  解答題(包括證明題) 9小題,共94分


  高等數(shù)學(xué)

  一、函數(shù)、極限、連續(xù)

  考試內(nèi)容

  函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 函數(shù)關(guān)系的建立 數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限與右極限 無(wú)窮小量和無(wú)窮大量的概念及其關(guān)系 無(wú)窮小量的性質(zhì)及無(wú)窮小量的比較 極限的四則運(yùn)算 極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個(gè)重要極限:

  ,

  函數(shù)連續(xù)的概念 函數(shù)間斷點(diǎn)的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)

  考試要求

  1.理解函數(shù)的概念,掌握函數(shù)的表示法,并會(huì)建立應(yīng)用問(wèn)題的函數(shù)關(guān)系.

  2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.

  3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.

  4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.

  5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關(guān)系.

  6.掌握極限的性質(zhì)及四則運(yùn)算法則.

  7.掌握極限存在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法.

  8.理解無(wú)窮小量、無(wú)窮大量的概念,掌握無(wú)窮小量的比較方法,會(huì)用等價(jià)無(wú)窮小量求極限.

  9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類型.

  10.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì).

  二、一元函數(shù)微分學(xué)

  考試內(nèi)容

  導(dǎo)數(shù)和微分的概念 導(dǎo)數(shù)的幾何意義和物理意義 函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系 平面曲線的切線和法線 導(dǎo)數(shù)和微分的四則運(yùn)算 基本初等函數(shù)的導(dǎo)數(shù) 復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法 高階導(dǎo)數(shù) 一階微分形式的不變性 微分中值定理 洛必達(dá)(L'Hospital)法則 函數(shù)單調(diào)性的判別 函數(shù)的極值 函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線 函數(shù)圖形的描繪 函數(shù)的最大值與最小值 弧微分 曲率的概念 曲率圓與曲率半徑

  考試要求

  1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系.

  2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式.了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求函數(shù)的微分.

  3.了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù).

  4.會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù).

  5.理解并會(huì)用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會(huì)用柯西(Cauchy)中值定理.

  6.掌握用洛必達(dá)法則求未定式極限的方法.

  7.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)的最大值和最小值的求法及其應(yīng)用.

  8.會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間 內(nèi),設(shè)函數(shù) 具有二階導(dǎo)數(shù).當(dāng) 時(shí), 的圖形是凹的;當(dāng) 時(shí), 的圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會(huì)描繪函數(shù)的圖形.

  9.了解曲率、曲率圓和曲率半徑的概念,會(huì)計(jì)算曲率和曲率半徑.

  三、一元函數(shù)積分學(xué)

  考試內(nèi)容

  原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限的函數(shù)及其導(dǎo)數(shù) 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 有理函數(shù)、三角函數(shù)的有理式和簡(jiǎn)單無(wú)理函數(shù)的積分 反常(廣義)積分 定積分的應(yīng)用

  考試要求

  1.理解原函數(shù)的概念,理解不定積分和定積分的概念.

  2.掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法.

  3.會(huì)求有理函數(shù)、三角函數(shù)有理式和簡(jiǎn)單無(wú)理函數(shù)的積分.

  4.理解積分上限的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式.

  5.了解反常積分的概念,會(huì)計(jì)算反常積分.

  6.掌握用定積分表達(dá)和計(jì)算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長(zhǎng)、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)平均值.

  四、多元函數(shù)微積分學(xué)

  考試內(nèi)容

  多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限與連續(xù)的概念 有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì) 多元函數(shù)的偏導(dǎo)數(shù)和全微分 多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法 二階偏導(dǎo)數(shù) 多元函數(shù)的極值和條件極值、最大值和最小值 二重積分的概念、基本性質(zhì)和計(jì)算

  考試要求

  1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義.

  2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì).

  3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,了解隱函數(shù)存在定理,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù).

  4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的最大值和最小值,并會(huì)解決一些簡(jiǎn)單的應(yīng)用問(wèn)題.

  5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)).

  五、常微分方程

  考試內(nèi)容

  常微分方程的基本概念 變量可分離的微分方程 齊次微分方程 一階線性微分方程 可降階的高階微分方程 線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理 二階常系數(shù)齊次線性微分方程 高于二階的某些常系數(shù)齊次線性微分方程 簡(jiǎn)單的二階常系數(shù)非齊次線性微分方程 微分方程的簡(jiǎn)單應(yīng)用

  考試要求

  1.了解微分方程及其階、解、通解、初始條件和特解等概念.

  2.掌握變量可分離的微分方程及一階線性微分方程的解法,會(huì)解齊次微分方程.

  3.會(huì)用降階法解下列形式的微分方程: 和 .

  4.理解二階線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理.

  5.掌握二階常系數(shù)齊次線性微分方程的解法,并會(huì)解某些高于二階的常系數(shù)齊次線性微分方程.

  6.會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程.

  7.會(huì)用微分方程解決一些簡(jiǎn)單的應(yīng)用問(wèn)題.

相關(guān)推薦:

結(jié)束
特別聲明:1.凡本網(wǎng)注明稿件來(lái)源為“湖北自考網(wǎng)”的,轉(zhuǎn)載必須注明“稿件來(lái)源:湖北自考網(wǎng)(m.heywebguys.com)”,違者將依法追究責(zé)任;
2.部分稿件來(lái)源于網(wǎng)絡(luò),如有不實(shí)或侵權(quán),請(qǐng)聯(lián)系我們溝通解決。最新官方信息請(qǐng)以湖北省教育考試院及各教育官網(wǎng)為準(zhǔn)!
"2015年湖北考研數(shù)學(xué)(二)大綱(1)" 相關(guān)文章推薦
考研備考專家,免費(fèi)解答疑惑

已有1254人已成功提交信息

微信公眾號(hào) 微信交流群
考研湖北微信公眾號(hào)

掃一掃加入微信公眾號(hào)

隨時(shí)獲取湖北考研政策、通知、公告以及各類學(xué)習(xí)資料、學(xué)習(xí)方法、課件。

成考院校 自考院校 專升本院校 資格證 其它熱門欄目 最新更新
院校指導(dǎo) 報(bào)考條件 特色課程 考研特訓(xùn)營(yíng) 備考錦囊 課程優(yōu)惠